My Library

     
Limit search to available items
Reviews & More
Book, etc.
Author Taranath, Bungale S

Title Structural analysis and design of tall buildings : steel and composite construction / Bungale S. Taranath

Publ Info Boca Raton : CRC/Taylor & Francis, [2012]
2012
Boca Raton : CRC/Taylor & Francis, [2012]
2012
LOCATION CALL # STATUS NOTE
 RWU Arch  ARCH TH845 .T334 2012    AVAILABLE
Descript liii, 635 pages : illustrations (some color), plates ; 27 cm
text rdacontent
unmediated rdamedia
volume rdacarrier
text rdacontent
unmediated rdamedia
volume rdacarrier
Note Includes bibliographical references (621-624) and index
Contents Machine generated contents note: Preview -- 1.1.Rigid Frames -- 1.1.1.Frames with Partially Rigid Connections -- 1.1.2.Review of Connection Behavior -- 1.1.2.1.Connection Classification -- 1.1.2.2.Connection Strength -- 1.1.2.3.Connection Ductility -- 1.1.2.4.Structural Analysis and Design -- 1.1.3.Beam Line Concept -- 1.2.Frames with Fully Restrained Connections -- 1.2.1.Special Moment Frame, Historic Perspective -- 1.2.1.1.Deflection Characteristics -- 1.2.2.Cantilever Bending Component -- 1.2.3.Shear Racking Component -- 1.2.4.Methods of Analysis -- 1.2.5.Drift Calculations -- 1.2.6.Truss Moment Frames -- 1.3.Concentric Braced Frames -- 1.3.1.Behavior -- 1.3.2.Types of Concentric Braces -- 1.4.Eccentric Braced Frames -- 1.4.1.Behavior -- 1.4.2.Deflection Characteristics -- 1.4.3.Seismic Design Considerations -- 1.4.3.1.Link Beam Design -- 1.4.3.2.Link-to-Column Connections -- 1.4.3.3.Diagonal Brace and Beam outside of Links -- 1.4.3.4.Link Stiffness -- 1.4.3.5.Columns -- 1.4.3.6.Schematic Details -- 1.5.Buckling-Restrained Brace Frame -- 1.6.Steel Plate Shear Wall -- 1.6.1.Low-Seismic Design -- 1.6.2.High-Seismic Design -- 1.6.2.1.Behavior -- 1.6.2.2.AISC 341-05 Requirements for Special Plate Shear Walls -- 1.6.2.3.Modeling for Analysis -- 1.6.2.4.Capacity Design Methods -- 1.7.Staggered Truss -- 1.7.1.Behavior -- 1.7.2.Design Considerations -- 1.7.2.1.Floor Systems -- 1.7.2.2.Columns -- 1.7.2.3.Trusses -- 1.7.3.Seismic Design of Staggered Truss System -- 1.7.3.1.Response of Staggered Truss System to Seismic Loads -- 1.8.Interacting System of Braced and Rigid Frames -- 1.8.1.Behavior -- 1.9.Core and Outrigger Systems -- 1.9.1.Behavior -- 1.9.1.1.Outrigger Located at Top -- 1.9.1.2.Outrigger Located at Three-Quarter Height from Bottom -- 1.9.1.3.Outrigger at Mid-Height -- 1.9.1.4.Outriggers at Quarter-Height from Bottom -- 1.9.2.Optimum Location of a Single Outrigger -- 1.9.2.1.Analysis Outline -- 1.9.2.2.Detail Analysis -- 1.9.2.3.Computer Analysis -- 1.9.2.4.Conclusions -- 1.9.3.Optimum Locations of Two Outriggers -- 1.9.3.1.Recommendations for Optimum Locations -- 1.9.4.Vulnerability of Core and Outrigger System to Progressive Collapse -- 1.9.5.Offset Outriggers -- 1.9.6.Example Projects -- 1.10.Frame Tube Systems -- 1.10.1.Behavior -- 1.10.2.Shear Lag -- 1.11.Irregular Tube -- 1.12.Trussed Tube -- 1.13.Bundled lithe -- 1.13.1.Behavior -- 1.14.Ultimate High-Efficiency Systems for Ultra Tall Buildings -- Preview -- 2.1.Composite Members -- 2.1.1.Composite Slabs -- 2.1.2.Composite Girders -- 2.1.3.Composite Columns -- 2.1.4.Composite Diagonals -- 2.1.5.Composite Shear Walls -- 2.2.Composite Subsystems -- 2.2.1.Composite Moment Frames -- 2.2.1.1.Ordinary Moment Frames -- 2.2.1.2.Special Moment Frames -- 2.2.2.Composite Braced Frames -- 2.2.3.Composite Eccentrically Braced Frames -- 2.2.4.Composite Construction -- 2.2.5.Temporary Bracing -- 2.3.Composite Building Systems -- 2.3.1.Reinforced Concrete Core with Steel Surround -- 2.3.2.Shear Wall-Frame Interacting Systems -- 2.3.3.Composite Tube Systems -- 2.3.4.Vertically Mixed Systems -- 2.3.5.Mega Frames with Super Columns -- 2.3.6.High-Efficiency Structure: Structural Concept -- 2.4.Seismic Design of Composite Buildings -- Preview -- 3.1.General Considerations -- 3.1.1.Steel and Cast Iron: Historical Perspective -- 3.1.1.1.Chronology of Steel Buildings -- 3.1.1.2.1920 through 1950 -- 3.1.1.3.1950 through 1970 -- 3.1.1.4.1970 to Present -- 3.1.2.Gravity Loads -- 3.1.3.Design Load Combinations -- 3.1.4.Required Strength -- 3.1.5.Limit States -- 3.1.6.Design for Strength Using Load and Resistance Factor Design -- 3.1.7.Serviceability Concerns -- 3.1.8.Deflections -- 3.2.Design of Members Subject to Compression -- 3.2.1.Buckling of Columns, Fundamentals -- 3.2.1.1.Euler's Formula -- 3.2.1.2.Energy Method of Calculating Critical Loads -- 3.2.2.Behavior of Compression Members -- 3.2.2.1.Element Instability -- 3.2.3.Limits on Slenderness Ratio, KL/r -- 3.2.4.Column Curves: Compressive Strength of Members without Slender Elements -- 3.2.5.Columns with Slender Unstiffened Elements: Yield Stress Reduction Factor, Q -- 3.2.6.Design Examples: Compression Members -- 3.2.6.1.Wide Flange Column, Design Example -- 3.2.6.2.HSS Column, Design Example -- 3.3.Design of Members Subject to Bending -- 3.3.1.Compact, Noncompact, and Slender Sections -- 3.3.2.Flexural Design of Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis -- 3.3.3.Design Examples, Members Subject to Bending and Shear -- 3.3.3.1.General Comments -- 3.3.3.2.Simple-Span Beam, Braced Top Flange -- 3.3.3.3.Simple-Span Beam, Unbraced Top Flange -- 3.4.Tension Members -- 3.4.1.Design Examples -- 3.4.1.1.Plate in Tension, Bolted Connection -- 3.4.1.2.Plate in Tension, Welded Connection -- 3.4.1.3.Double-Angle Hanger -- 3.4.1.4.Bottom Chord of a Long-Span Truss -- 3.4.1.5.Pin-Connected Tension Member -- 3.4.1.6.Eyebar Tension Member -- 3.5.Design for Shear, Additional Comments -- 3.5.1.Transverse Stiffeners -- 3.5.2.Tension Field Action -- 3.6.Design of Members for Combined Forces and Torsion (in Other Words, Members Subjected to Torture) -- 3.7.Design for Stability -- 3.7.1.Behavior of Beam Columns -- 3.7.2.Buckling of Columns -- 3.7.3.Second-Order Effects -- 3.7.4.Deformation of the Structure -- 3.7.5.Residual Stresses -- 3.7.6.Notional Load -- 3.7.7.Geometric Imperfections -- 3.7.8.Leaning Columns -- 3.8.AISC 360-10 Stability Provisions -- 3.8.1.Second-Order Analysis -- 3.8.2.Reduced Stiffness in the Analysis -- 3.8.3.Application of Notional Loads -- 3.8.4.Member Strength Checks -- 3.8.5.Step-by-Step Procedure for Direct Analysis Method -- 3.9.Understanding How Commercial Software Works -- Preview -- 4.1.Composite Metal Deck -- 4.1.1.SDI Specifications -- 4.2.Composite Beams -- 4.2.1.AISC Design Criteria: Composite Beams with Metal Deck and Concrete Topping -- 4.2.1.1.AISC Requirements, General Comments -- 4.2.1.2.Effective Width -- 4.2.1.3.Positive Flexural Strength -- 4.2.1.4.Negative Flexural Strength -- 4.2.1.5.Shear Connectors -- 4.2.1.6.Deflection Considerations -- 4.2.1.7.Design Outline for Composite Beam -- 4.3.Composite Joists and Trusses -- 4.3.1.Composite Joists -- 4.3.2.Composite Trusses -- 4.4.Other Types of Composite Floor Construction -- 4.5.Continuous Composite Beams -- 4.6.Nonprismatic Composite Beams and Girders -- 4.7.Moment-Connected Composite Haunch Girders -- 4.8.Composite Stub Girders -- 4.8.1.Behavior and Analysis -- 4.8.2.Stub Girder Design Example -- 4.8.3.Moment-Connected Stub Girder -- 4.8.4.Strengthening of Stub Girder -- 4.9.Composite Columns -- 4.9.1.Behavior -- 4.9.2.AISC Design Criteria, Encased Composite Columns -- 4.9.2.1.Limitations -- 4.9.2.2.Compressive Strength -- 4.9.2.3.Tensile Strength -- 4.9.2.4.Shear Strength -- 4.9.2.5.Load Transfer -- 4.9.2.6.Detailing Requirements -- 4.9.2.7.Strength of Stud Shear Connectors -- 4.9.3.AISC Design Criteria for Filled Composite Columns -- 4.9.3.1.Limitations -- 4.9.3.2.Compressive Strength -- 4.9.3.3.Tensile Strength -- 4.9.3.4.Shear Strength -- 4.9.3.5.Load Transfer -- 4.9.4.Summary of Composite Design Column -- 4.9.4.1.Nominal Strength of Composite Sections -- 4.9.4.2.Encased Composite Columns -- 4.9.4.3.Filled Composite Columns -- 4.9.5.Combined Axial Force and Flexure -- Preview -- 5.1.Design Considerations -- 5.2.Variation of Wind Velocity with Height (Velocity Profile) -- 5.3.Probabilistic Approach -- 5.4.Vortex Shedding -- 5.5.ASCE 7-05 Wind Load Provisions -- 5.5.1.Analytical Procedure: Method 2, Overview -- 5.5.2.Analytical Method: Step-by-Step Procedure -- 5.5.3.Wind Speed-Up over Hills and Escarpments: Kzt Factor -- 5.5.4.Gust Effect Factor -- 5.5.4.1.Gust Effect Factor G for Rigid Structure: Simplified Method -- 5.5.4.2.Gust Effect Factor G for Rigid Structure: Improved Method -- 5.5.4.3.Gust Effect Factor Gf for Flexible or Dynamically Sensitive Buildings -- 5.5.5.Along-Wind Displacement and Acceleration -- 5.5.6.Summary of ASCE 7-05 Wind Provisions -- 5.6.Wind-Tunnel Tests -- 5.6.1.Types of Wind-Tunnel Tests -- 5.6.2.Option for Wind-Tunnel Testing -- 5.6.3.Lower Limits on Wind-Tunnel Test Results -- 5.6.3.1.Lower Limit on Pressures for Main Wind-Force Resisting System -- 5.6.3.2.Lower Limit on Pressures for Components and Cladding -- 5.7.Building Drift -- 5.8.Human Response to Wind-Induced Building Motions -- 5.9.Structural Properties Required for Wind Tunnel Data Analysis -- 5.9.1.Natural Frequencies -- 5.9.2.Mode Shapes -- 5.9.3.Mass Distribution -- 5.9.4.Damping Ratio -- 5.9.5.Miscellaneous Information -- 5.10.Period Determination for Wind Design -- 5.11.ASCE 7-10 Wind Load Provisions -- 5.11.1.New Wind Speed Maps -- 5.11.2.Return of Exposure D -- 5.11.3.Wind-Borne Debris -- Preview -- 6.1.Structural Dynamics -- 6.1.1.Dynamic Loads -- 6.1.1.1.Concept of Dynamic Load Factor -- 6.1.1.2.Difference between Static and Dynamic Analysis -- 6.1.1.3.Dynamic Effects due to Wind Gusts -- 6.1.2.Characteristics of a Dynamic Problem -- 6.1.3.Multiple Strategy of Seismic Design -- 6.1.3.1.Example of Portal Frame Subject to Ground Motions -- 6.1.4.Concept of Dynamic Equilibrium -- 6.1.5.Free Vibrations -- 6.1.6.Earthquake Excitation -- 6.1.6.1.Single-Degree-of-Freedom Systems -- 6.1.6.2.Numerical Integration, Design Example -- 6.1.6.3.Numerical Integration: A Summary -- 6.1.6.4.Summary of Structural Dynamics -- 6.1.7.Response Spectrum Method -- 6.1.7.1.Earthquake Response Spectrum -- 6.1.7.2.Deformation Response Spectrum -- 6.1.7.3.Pseudo-Velocity Response Spectrum -- 6.1.7.4.Pseudo-Acceleration Response Spectrum -- 6.1.7.5.Tripartite Response Spectrum: Combined Displacement[-]Velocity[-]Acceleration Spectrum -- 6.1.7.6.Characteristics of Response Spectrum -- 6.1.7.7.Difference between Design and Actual Response Spectra -- 6.1.7.8.Summary of Response Spectrum Analysis -- 6.1.8.Hysteresis Loop -- 6.2.Seismic Design Considerations -- 6.2.1.Seismic Response of Buildings --
LC subject Tall buildings -- Design and construction
Structural analysis (Engineering)
ISBN 9781439850893 (hbk. : alk. paper)
1439850895 (hbk. : alk. paper)